Title: | Graphical Visualizations for Multi-Objective Optimization |
---|---|
Description: | Visualization of multi-dimensional data arising in multi-objective optimization, including plots of the empirical attainment function (EAF), M. López-Ibáñez, L. Paquete, and T. Stützle (2010) <doi:10.1007/978-3-642-02538-9_9>, and symmetric Vorob'ev expectation and deviation, M. Binois, D. Ginsbourger, O. Roustant (2015) <doi:10.1016/j.ejor.2014.07.032>, among others. |
Authors: | Manuel López-Ibáñez [aut, cre]
|
Maintainer: | Manuel López-Ibáñez <[email protected]> |
License: | LGPL (>= 2) |
Version: | 0.1.1 |
Built: | 2025-03-24 12:33:42 UTC |
Source: | https://github.com/multi-objective/mooplot |
Creates the same plot as eafdiffplot()
but waits for the user to click in
one of the sides. Then it returns the rectangles the give the differences in
favour of the chosen side. These rectangles may be used for interactive
decision-making as shown in Diaz and López-Ibáñez (2021). The function
moocore::choose_eafdiff()
may be used in a non-interactive context.
choose_eafdiffplot( data_left, data_right, intervals = 5, maximise = c(FALSE, FALSE), title_left = deparse(substitute(data_left)), title_right = deparse(substitute(data_right)), ... )
choose_eafdiffplot( data_left, data_right, intervals = 5, maximise = c(FALSE, FALSE), title_left = deparse(substitute(data_left)), title_right = deparse(substitute(data_right)), ... )
data_left , data_right
|
Data frames corresponding to the input data of
left and right sides, respectively. Each data frame has at least three
columns, the third one being the set of each point. See also
|
intervals |
( |
maximise |
( |
title_left , title_right
|
Title for left and right panels, respectively. |
... |
Other graphical parameters are passed down to
|
matrix()
where the first 4 columns give the coordinates of two
corners of each rectangle and the last column. In both cases, the last
column gives the positive differences in favor of the chosen side.
Juan Esteban Diaz, Manuel López-Ibáñez (2021). “Incorporating Decision-Maker's Preferences into the Automatic Configuration of Bi-Objective Optimisation Algorithms.” European Journal of Operational Research, 289(3), 1209–1222. doi:10.1016/j.ejor.2020.07.059.
moocore::read_datasets()
, eafdiffplot()
, moocore::whv_rect()
library(moocore) extdata_dir <- system.file(package="moocore", "extdata") A1 <- read_datasets(file.path(extdata_dir, "wrots_l100w10_dat")) A2 <- read_datasets(file.path(extdata_dir, "wrots_l10w100_dat")) if (interactive()) { rectangles <- choose_eafdiffplot(A1, A2, intervals = 5) } else { # Choose A1 rectangles <- eafdiff(A1, A2, intervals = 5, rectangles = TRUE) rectangles <- choose_eafdiff(rectangles, left = TRUE) } reference <- c(max(A1[, 1], A2[, 1]), max(A1[, 2], A2[, 2])) x <- split.data.frame(A1[,1:2], A1[,3]) hv_A1 <- sapply(split.data.frame(A1[, 1:2], A1[, 3]), hypervolume, reference=reference) hv_A2 <- sapply(split.data.frame(A2[, 1:2], A2[, 3]), hypervolume, reference=reference) boxplot(list(A1=hv_A1, A2=hv_A2), main = "Hypervolume") whv_A1 <- sapply(split.data.frame(A1[, 1:2], A1[, 3]), whv_rect, rectangles=rectangles, reference=reference) whv_A2 <- sapply(split.data.frame(A2[, 1:2], A2[, 3]), whv_rect, rectangles=rectangles, reference=reference) boxplot(list(A1=whv_A1, A2=whv_A2), main = "Weighted hypervolume")
library(moocore) extdata_dir <- system.file(package="moocore", "extdata") A1 <- read_datasets(file.path(extdata_dir, "wrots_l100w10_dat")) A2 <- read_datasets(file.path(extdata_dir, "wrots_l10w100_dat")) if (interactive()) { rectangles <- choose_eafdiffplot(A1, A2, intervals = 5) } else { # Choose A1 rectangles <- eafdiff(A1, A2, intervals = 5, rectangles = TRUE) rectangles <- choose_eafdiff(rectangles, left = TRUE) } reference <- c(max(A1[, 1], A2[, 1]), max(A1[, 2], A2[, 2])) x <- split.data.frame(A1[,1:2], A1[,3]) hv_A1 <- sapply(split.data.frame(A1[, 1:2], A1[, 3]), hypervolume, reference=reference) hv_A2 <- sapply(split.data.frame(A2[, 1:2], A2[, 3]), hypervolume, reference=reference) boxplot(list(A1=hv_A1, A2=hv_A2), main = "Hypervolume") whv_A1 <- sapply(split.data.frame(A1[, 1:2], A1[, 3]), whv_rect, rectangles=rectangles, reference=reference) whv_A2 <- sapply(split.data.frame(A2[, 1:2], A2[, 3]), whv_rect, rectangles=rectangles, reference=reference) boxplot(list(A1=whv_A1, A2=whv_A2), main = "Weighted hypervolume")
Plot the differences between the empirical attainment functions (EAFs) of two data sets as a two-panel plot, where the left side shows the values of the left EAF minus the right EAF and the right side shows the differences in the other direction.
eafdiffplot( data_left, data_right, col = c("#FFFFFF", "#808080", "#000000"), intervals = 5L, percentiles = 50, full.eaf = FALSE, type = "area", legend.pos = if (full.eaf) "bottomleft" else "topright", maximise = c(FALSE, FALSE), title_left, title_right, xlim = NULL, ylim = NULL, cex = par("cex"), cex.lab = par("cex.lab"), cex.axis = par("cex.axis"), grand.lines = TRUE, sci.notation = FALSE, left.panel.last = NULL, right.panel.last = NULL, ... )
eafdiffplot( data_left, data_right, col = c("#FFFFFF", "#808080", "#000000"), intervals = 5L, percentiles = 50, full.eaf = FALSE, type = "area", legend.pos = if (full.eaf) "bottomleft" else "topright", maximise = c(FALSE, FALSE), title_left, title_right, xlim = NULL, ylim = NULL, cex = par("cex"), cex.lab = par("cex.lab"), cex.axis = par("cex.axis"), grand.lines = TRUE, sci.notation = FALSE, left.panel.last = NULL, right.panel.last = NULL, ... )
data_left , data_right
|
Data frames corresponding to the input data of
left and right sides, respectively. Each data frame has at least three
columns, the third one being the set of each point. See also
|
col |
A character vector of three colors for the magnitude of the
differences of 0, 0.5, and 1. Intermediate colors are computed
automatically given the value of |
intervals |
( |
percentiles |
The percentiles of the EAF of each side that will be
plotted as attainment surfaces. |
full.eaf |
Whether to plot the EAF of each side instead of the differences between the EAFs. |
type |
( |
legend.pos |
( |
maximise |
( |
title_left , title_right
|
Title for left and right panels, respectively. |
xlim , ylim , cex , cex.lab , cex.axis
|
Graphical parameters, see
|
grand.lines |
Whether to plot the grand-best and grand-worst attainment surfaces. |
sci.notation |
Generate prettier labels |
left.panel.last , right.panel.last
|
An expression to be evaluated after
plotting has taken place on each panel (left or right). This can be useful
for adding points or text to either panel. Note that this works by lazy
evaluation: passing this argument from other |
... |
Other graphical parameters are passed down to
|
This function calculates the differences between the EAFs of two data sets, and plots on the left the differences in favour of the left data set, and on the right the differences in favour of the right data set. By default, it also plots the grand best and worst attainment surfaces, that is, the 0%- and 100%-attainment surfaces over all data. These two surfaces delimit the area where differences may exist. In addition, it also plots the 50%-attainment surface of each data set.
With type = "point"
, only the points where there is a change in the
value of the EAF difference are plotted. This means that for areas where
the EAF differences stays constant, the region will appear in white even
if the value of the differences in that region is large. This explains
"white holes" surrounded by black points.
With type = "area"
, the area where the EAF differences has a certain
value is plotted. The idea for the algorithm to compute the areas was
provided by Carlos M. Fonseca. The implementation uses R polygons, which
some PDF viewers may have trouble rendering correctly (See
https://cran.r-project.org/doc/FAQ/R-FAQ.html#Why-are-there-unwanted-borders).
Plots (should) look correct when printed.
Large differences that appear when using type = "point"
may
seem to disappear when using type = "area"
. The explanation is
the points size is independent of the axes range, therefore, the
plotted points may seem to cover a much larger area than the actual
number of points. On the other hand, the areas size is plotted with
respect to the objective space, without any extra borders. If the
range of an area becomes smaller than one-pixel, it won't be
visible. As a consequence, zooming in or out certain regions of the plots
does not change the apparent size of the points, whereas it affects
considerably the apparent size of the areas.
Returns a representation of the EAF differences (invisibly).
Viviane Grunert da Fonseca, Carlos M. Fonseca, Andreia O. Hall (2001). “Inferential Performance Assessment of Stochastic Optimisers and the Attainment Function.” In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello, David Corne (eds.), Evolutionary Multi-criterion Optimization, EMO 2001, volume 1993 of Lecture Notes in Computer Science, 213–225. Springer, Berlin~/ Heidelberg. doi:10.1007/3-540-44719-9_15.
Manuel López-Ibáñez, Luís Paquete, Thomas Stützle (2010). “Exploratory Analysis of Stochastic Local Search Algorithms in Biobjective Optimization.” In Thomas Bartz-Beielstein, Marco Chiarandini, Luís Paquete, Mike Preuss (eds.), Experimental Methods for the Analysis of Optimization Algorithms, 209–222. Springer, Berlin~/ Heidelberg. doi:10.1007/978-3-642-02538-9_9.
read_datasets()
eafplot()
pdf_crop()
## NOTE: The plots in the website look squashed because of how pkgdown ## generates them. They should look fine when you generate them yourself. extdata_dir <- system.file(package="moocore", "extdata") A1 <- read_datasets(file.path(extdata_dir, "ALG_1_dat.xz")) A2 <- read_datasets(file.path(extdata_dir, "ALG_2_dat.xz")) # These take time eafdiffplot(A1, A2, full.eaf = TRUE) if (requireNamespace("viridisLite", quietly=TRUE)) { viridis_r <- function(n) viridisLite::viridis(n, direction=-1) eafdiffplot(A1, A2, type = "area", col = viridis_r) } else { eafdiffplot(A1, A2, type = "area") } A1 <- read_datasets(file.path(extdata_dir, "wrots_l100w10_dat")) A2 <- read_datasets(file.path(extdata_dir, "wrots_l10w100_dat")) eafdiffplot(A1, A2, type = "point", sci.notation = TRUE, cex.axis=0.6) # A more complex example DIFF <- eafdiffplot(A1, A2, col = c("white", "blue", "red"), intervals = 5, type = "point", title_left=expression("W-RoTS," ~ lambda==100 * "," ~ omega==10), title_right=expression("W-RoTS," ~ lambda==10 * "," ~ omega==100), right.panel.last={ abline(a = 0, b = 1, col = "red", lty = "dashed")}) ## Save the values to a file. # DIFF$right[,3] <- -DIFF$right[,3] # write.table(rbind(DIFF$left,DIFF$right), # file = "wrots_l100w10_dat-wrots_l10w100_dat-diff.txt", # quote = FALSE, row.names = FALSE, col.names = FALSE)
## NOTE: The plots in the website look squashed because of how pkgdown ## generates them. They should look fine when you generate them yourself. extdata_dir <- system.file(package="moocore", "extdata") A1 <- read_datasets(file.path(extdata_dir, "ALG_1_dat.xz")) A2 <- read_datasets(file.path(extdata_dir, "ALG_2_dat.xz")) # These take time eafdiffplot(A1, A2, full.eaf = TRUE) if (requireNamespace("viridisLite", quietly=TRUE)) { viridis_r <- function(n) viridisLite::viridis(n, direction=-1) eafdiffplot(A1, A2, type = "area", col = viridis_r) } else { eafdiffplot(A1, A2, type = "area") } A1 <- read_datasets(file.path(extdata_dir, "wrots_l100w10_dat")) A2 <- read_datasets(file.path(extdata_dir, "wrots_l10w100_dat")) eafdiffplot(A1, A2, type = "point", sci.notation = TRUE, cex.axis=0.6) # A more complex example DIFF <- eafdiffplot(A1, A2, col = c("white", "blue", "red"), intervals = 5, type = "point", title_left=expression("W-RoTS," ~ lambda==100 * "," ~ omega==10), title_right=expression("W-RoTS," ~ lambda==10 * "," ~ omega==100), right.panel.last={ abline(a = 0, b = 1, col = "red", lty = "dashed")}) ## Save the values to a file. # DIFF$right[,3] <- -DIFF$right[,3] # write.table(rbind(DIFF$left,DIFF$right), # file = "wrots_l100w10_dat-wrots_l10w100_dat-diff.txt", # quote = FALSE, row.names = FALSE, col.names = FALSE)
Computes and plots the Empirical Attainment Function (EAF), either as attainment surfaces for certain percentiles or as points.
eafplot(x, ...) ## Default S3 method: eafplot( x, sets, groups = NULL, percentiles = c(0, 50, 100), attsurfs = NULL, maximise = c(FALSE, FALSE), type = "point", xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL, log = "", col = NULL, lty = c("dashed", "solid", "solid", "solid", "dashed"), lwd = 1.75, pch = NA, cex.pch = par("cex"), las = par("las"), legend.pos = paste0(ifelse(maximise[1L], "bottom", "top"), ifelse(rep_len(maximise, 2L)[2L], "left", "right")), legend.txt = NULL, extra.points = NULL, extra.legend = NULL, extra.pch = 4:25, extra.lwd = 0.5, extra.lty = NA, extra.col = "black", xaxis.side = "below", yaxis.side = "left", axes = TRUE, sci.notation = FALSE, ... ) ## S3 method for class 'list' eafplot(x, ...)
eafplot(x, ...) ## Default S3 method: eafplot( x, sets, groups = NULL, percentiles = c(0, 50, 100), attsurfs = NULL, maximise = c(FALSE, FALSE), type = "point", xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL, log = "", col = NULL, lty = c("dashed", "solid", "solid", "solid", "dashed"), lwd = 1.75, pch = NA, cex.pch = par("cex"), las = par("las"), legend.pos = paste0(ifelse(maximise[1L], "bottom", "top"), ifelse(rep_len(maximise, 2L)[2L], "left", "right")), legend.txt = NULL, extra.points = NULL, extra.legend = NULL, extra.pch = 4:25, extra.lwd = 0.5, extra.lty = NA, extra.col = "black", xaxis.side = "below", yaxis.side = "left", axes = TRUE, sci.notation = FALSE, ... ) ## S3 method for class 'list' eafplot(x, ...)
x |
Either a matrix of data values, or a data frame, or a list of data frames of exactly three columns. |
... |
Other graphical parameters to |
sets |
Vector indicating which set each point belongs to. Will be coerced to a factor. |
groups |
This may be used to plot data for different algorithms on the same plot. Will be coerced to a factor. |
percentiles |
( |
attsurfs |
TODO |
maximise |
( |
type |
( |
xlab , ylab , xlim , ylim , log , col , lty , lwd , pch , cex.pch , las
|
Graphical
parameters, see |
legend.pos |
( |
legend.txt |
( |
extra.points |
A list of matrices or data.frames with
two-columns. Each element of the list defines a set of points, or
lines if one of the columns is |
extra.legend |
A character vector providing labels for the groups of points. |
extra.pch , extra.lwd , extra.lty , extra.col
|
Control the graphical aspect
of the points. See |
xaxis.side |
( |
yaxis.side |
( |
axes |
( |
sci.notation |
( |
This function can be used to plot random sets of points like those obtained by different runs of biobjective stochastic optimisation algorithms (López-Ibáñez et al. 2010). An EAF curve represents the boundary separating points that are known to be attainable (that is, dominated in Pareto sense) in at least a fraction (quantile) of the runs from those that are not (Grunert da Fonseca et al. 2001). The median EAF represents the curve where the fraction of attainable points is 50%. In single objective optimisation the function can be used to plot the profile of solution quality over time of a collection of runs of a stochastic optimizer (López-Ibáñez et al. 2025).
The attainment surfaces computed (invisibly).
eafplot(default)
: Main function
eafplot(list)
: List interface for lists of data.frames or matrices
Viviane Grunert da Fonseca, Carlos
M. Fonseca, Andreia
O. Hall (2001).
“Inferential Performance Assessment of Stochastic Optimisers and the Attainment Function.”
In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos
A. Coello Coello, David Corne (eds.), Evolutionary Multi-criterion Optimization, EMO 2001, volume 1993 of Lecture Notes in Computer Science, 213–225.
Springer, Berlin~/ Heidelberg.
doi:10.1007/3-540-44719-9_15.
Manuel López-Ibáñez, Luís Paquete, Thomas Stützle (2010).
“Exploratory Analysis of Stochastic Local Search Algorithms in Biobjective Optimization.”
In Thomas Bartz-Beielstein, Marco Chiarandini, Luís Paquete, Mike Preuss (eds.), Experimental Methods for the Analysis of Optimization Algorithms, 209–222.
Springer, Berlin~/ Heidelberg.
doi:10.1007/978-3-642-02538-9_9.
Manuel López-Ibáñez, Diederick Vermetten, Johann Dreo, Carola Doerr (2025).
“Using the Empirical Attainment Function for Analyzing Single-objective Black-box Optimization Algorithms.”
IEEE Transactions on Evolutionary Computation.
doi:10.1109/TEVC.2024.3462758.
moocore::read_datasets()
eafdiffplot()
pdf_crop()
extdata_path <- system.file(package = "moocore", "extdata") A1 <- read_datasets(file.path(extdata_path, "ALG_1_dat.xz")) A2 <- read_datasets(file.path(extdata_path, "ALG_2_dat.xz")) eafplot(A1, percentiles = 50, sci.notation = TRUE, cex.axis=0.6) # The attainment surfaces are returned invisibly. attsurfs <- eafplot(list(A1 = A1, A2 = A2), percentiles = 50) str(attsurfs) ## Save as a PDF file. # dev.copy2pdf(file = "eaf.pdf", onefile = TRUE, width = 5, height = 4) ## Using extra.points data(HybridGA, package="moocore") data(SPEA2relativeVanzyl, package="moocore") eafplot(SPEA2relativeVanzyl, percentiles = c(25, 50, 75), xlab = expression(C[E]), ylab = "Total switches", xlim = c(320, 400), extra.points = HybridGA$vanzyl, extra.legend = "Hybrid GA") data(SPEA2relativeRichmond, package="moocore") eafplot (SPEA2relativeRichmond, percentiles = c(25, 50, 75), xlab = expression(C[E]), ylab = "Total switches", xlim = c(90, 140), ylim = c(0, 25), extra.points = HybridGA$richmond, extra.lty = "dashed", extra.legend = "Hybrid GA") eafplot (SPEA2relativeRichmond, percentiles = c(25, 50, 75), xlab = expression(C[E]), ylab = "Total switches", xlim = c(90, 140), ylim = c(0, 25), type = "area", extra.points = HybridGA$richmond, extra.lty = "dashed", extra.legend = "Hybrid GA", legend.pos = "bottomright") data(SPEA2minstoptimeRichmond, package="moocore") SPEA2minstoptimeRichmond[,2] <- SPEA2minstoptimeRichmond[,2] / 60 eafplot (SPEA2minstoptimeRichmond, xlab = expression(C[E]), ylab = "Minimum idle time (minutes)", maximise = c(FALSE, TRUE), las = 1, log = "y", main = "SPEA2 (Richmond)", legend.pos = "bottomright") data(tpls50x20_1_MWT, package="moocore") eafplot(tpls50x20_1_MWT[, c(2,3)], sets = tpls50x20_1_MWT[,4L], groups = tpls50x20_1_MWT[["algorithm"]])
extdata_path <- system.file(package = "moocore", "extdata") A1 <- read_datasets(file.path(extdata_path, "ALG_1_dat.xz")) A2 <- read_datasets(file.path(extdata_path, "ALG_2_dat.xz")) eafplot(A1, percentiles = 50, sci.notation = TRUE, cex.axis=0.6) # The attainment surfaces are returned invisibly. attsurfs <- eafplot(list(A1 = A1, A2 = A2), percentiles = 50) str(attsurfs) ## Save as a PDF file. # dev.copy2pdf(file = "eaf.pdf", onefile = TRUE, width = 5, height = 4) ## Using extra.points data(HybridGA, package="moocore") data(SPEA2relativeVanzyl, package="moocore") eafplot(SPEA2relativeVanzyl, percentiles = c(25, 50, 75), xlab = expression(C[E]), ylab = "Total switches", xlim = c(320, 400), extra.points = HybridGA$vanzyl, extra.legend = "Hybrid GA") data(SPEA2relativeRichmond, package="moocore") eafplot (SPEA2relativeRichmond, percentiles = c(25, 50, 75), xlab = expression(C[E]), ylab = "Total switches", xlim = c(90, 140), ylim = c(0, 25), extra.points = HybridGA$richmond, extra.lty = "dashed", extra.legend = "Hybrid GA") eafplot (SPEA2relativeRichmond, percentiles = c(25, 50, 75), xlab = expression(C[E]), ylab = "Total switches", xlim = c(90, 140), ylim = c(0, 25), type = "area", extra.points = HybridGA$richmond, extra.lty = "dashed", extra.legend = "Hybrid GA", legend.pos = "bottomright") data(SPEA2minstoptimeRichmond, package="moocore") SPEA2minstoptimeRichmond[,2] <- SPEA2minstoptimeRichmond[,2] / 60 eafplot (SPEA2minstoptimeRichmond, xlab = expression(C[E]), ylab = "Minimum idle time (minutes)", maximise = c(FALSE, TRUE), las = 1, log = "y", main = "SPEA2 (Richmond)", legend.pos = "bottomright") data(tpls50x20_1_MWT, package="moocore") eafplot(tpls50x20_1_MWT[, c(2,3)], sets = tpls50x20_1_MWT[,4L], groups = tpls50x20_1_MWT[["algorithm"]])
Remove whitespace margins using https://ctan.org/pkg/pdfcrop and
optionally embed fonts using grDevices::embedFonts()
. You may install
pdfcrop
using TinyTeX (https://cran.r-project.org/package=tinytex) with
tinytex::tlmgr_install('pdfcrop')
.
pdf_crop( filename, mustWork = FALSE, pdfcrop = Sys.which("pdfcrop"), embed_fonts = FALSE )
pdf_crop( filename, mustWork = FALSE, pdfcrop = Sys.which("pdfcrop"), embed_fonts = FALSE )
filename |
( |
mustWork |
( |
pdfcrop |
( |
embed_fonts |
( |
You may also wish to consider extrafont::embed_fonts()
(https://cran.r-project.org/package=extrafont).
library(extrafont) # If you need to specify the path to Ghostscript (probably not needed in Linux) Sys.setenv(R_GSCMD = "C:/Program Files/gs/gs9.56.1/bin/gswin64c.exe") embed_fonts("original.pdf", outfile = "new.pdf")
As an alternative, saving the PDF with grDevices::cairo_pdf()
should
already embed the fonts.
No return value, called for side effects
grDevices::embedFonts()
extrafont::embed_fonts()
grDevices::cairo_pdf()
extdata_path <- system.file(package = "moocore", "extdata") A1 <- read_datasets(file.path(extdata_path, "wrots_l100w10_dat")) A2 <- read_datasets(file.path(extdata_path, "wrots_l10w100_dat")) filename <- tempfile("eafplot", fileext=".pdf") pdf(file = filename, onefile = TRUE, width = 5, height = 4) eafplot(list(A1 = A1, A2 = A2), percentiles = 50, sci.notation = TRUE) dev.off() try(pdf_crop(filename)) # This may fail if pdfcrop is not installed.
extdata_path <- system.file(package = "moocore", "extdata") A1 <- read_datasets(file.path(extdata_path, "wrots_l100w10_dat")) A2 <- read_datasets(file.path(extdata_path, "wrots_l10w100_dat")) filename <- tempfile("eafplot", fileext=".pdf") pdf(file = filename, onefile = TRUE, width = 5, height = 4) eafplot(list(A1 = A1, A2 = A2), percentiles = 50, sci.notation = TRUE) dev.off() try(pdf_crop(filename)) # This may fail if pdfcrop is not installed.
The symmetric deviation function is the probability for a given target in the objective space to belong to the symmetric difference between the Vorob'ev expectation and a realization of the (random) attained set.
symdevplot( x, sets, VE, threshold, nlevels = 11, ve.col = "blue", xlim = NULL, ylim = NULL, legend.pos = "topright", main = "Symmetric deviation function", col.fun = function(n) gray(seq(0, 0.9, length.out = n)^2) )
symdevplot( x, sets, VE, threshold, nlevels = 11, ve.col = "blue", xlim = NULL, ylim = NULL, legend.pos = "topright", main = "Symmetric deviation function", col.fun = function(n) gray(seq(0, 0.9, length.out = n)^2) )
x |
|
sets |
|
VE , threshold
|
Vorob'ev expectation and threshold, e.g., as returned
by |
nlevels |
( |
ve.col |
Plotting parameters for the Vorob'ev expectation. |
xlim , ylim , main
|
Graphical parameters, see
|
legend.pos |
The position of the legend, see
|
col.fun |
Function that creates a vector of |
No return value, called for side effects
Mickael Binois
M Binois, D Ginsbourger, O Roustant (2015). “Quantifying uncertainty on Pareto fronts with Gaussian process conditional simulations.” European Journal of Operational Research, 243(2), 386–394. doi:10.1016/j.ejor.2014.07.032.
C. Chevalier (2013), Fast uncertainty reduction strategies relying on Gaussian process models, University of Bern, PhD thesis.
Ilya Molchanov (2005). Theory of Random Sets. Springer.
moocore::vorobT()
moocore::vorobDev()
eafplot()
data(CPFs, package = "moocore") res <- moocore::vorobT(CPFs, reference = c(2, 200)) print(res$threshold) ## Display Vorob'ev expectation and attainment function # First style eafplot(CPFs[,1:2], sets = CPFs[,3], percentiles = c(0, 25, 50, 75, 100, res$threshold), main = substitute(paste("Empirical attainment function, ",beta,"* = ", a, "%"), list(a = formatC(res$threshold, digits = 2, format = "f")))) # Second style eafplot(CPFs[,1:2], sets = CPFs[,3], percentiles = c(0, 20, 40, 60, 80, 100), col = gray(seq(0.8, 0.1, length.out = 6)^0.5), type = "area", legend.pos = "bottomleft", extra.points = res$VE, extra.col = "cyan", extra.legend = "VE", extra.lty = "solid", extra.pch = NA, extra.lwd = 2, main = substitute(paste("Empirical attainment function, ",beta,"* = ", a, "%"), list(a = formatC(res$threshold, digits = 2, format = "f")))) # Vorob'ev deviation VD <- moocore::vorobDev(CPFs, reference = c(2, 200), VE = res$VE) # Display the symmetric deviation function. symdevplot(CPFs, VE = res$VE, threshold = res$threshold, nlevels = 11) # Levels are adjusted automatically if too large. symdevplot(CPFs, VE = res$VE, threshold = res$threshold, nlevels = 200, legend.pos = "none") # Use a different palette. symdevplot(CPFs, VE = res$VE, threshold = res$threshold, nlevels = 11, col.fun = heat.colors)
data(CPFs, package = "moocore") res <- moocore::vorobT(CPFs, reference = c(2, 200)) print(res$threshold) ## Display Vorob'ev expectation and attainment function # First style eafplot(CPFs[,1:2], sets = CPFs[,3], percentiles = c(0, 25, 50, 75, 100, res$threshold), main = substitute(paste("Empirical attainment function, ",beta,"* = ", a, "%"), list(a = formatC(res$threshold, digits = 2, format = "f")))) # Second style eafplot(CPFs[,1:2], sets = CPFs[,3], percentiles = c(0, 20, 40, 60, 80, 100), col = gray(seq(0.8, 0.1, length.out = 6)^0.5), type = "area", legend.pos = "bottomleft", extra.points = res$VE, extra.col = "cyan", extra.legend = "VE", extra.lty = "solid", extra.pch = NA, extra.lwd = 2, main = substitute(paste("Empirical attainment function, ",beta,"* = ", a, "%"), list(a = formatC(res$threshold, digits = 2, format = "f")))) # Vorob'ev deviation VD <- moocore::vorobDev(CPFs, reference = c(2, 200), VE = res$VE) # Display the symmetric deviation function. symdevplot(CPFs, VE = res$VE, threshold = res$threshold, nlevels = 11) # Levels are adjusted automatically if too large. symdevplot(CPFs, VE = res$VE, threshold = res$threshold, nlevels = 200, legend.pos = "none") # Use a different palette. symdevplot(CPFs, VE = res$VE, threshold = res$threshold, nlevels = 11, col.fun = heat.colors)